Derivatives
The derivative of $f(x)$ with respect to $x$ is:
$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
Common derivatives: - $\frac{d}{dx}(x^n) = nx^{n-1}$ - $\frac{d}{dx}(e^x) = e^x$ - $\frac{d}{dx}(\sin x) = \cos x$
Course: Math with KaTeX
The derivative of $f(x)$ with respect to $x$ is:
$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
Common derivatives: - $\frac{d}{dx}(x^n) = nx^{n-1}$ - $\frac{d}{dx}(e^x) = e^x$ - $\frac{d}{dx}(\sin x) = \cos x$